1	(i) 0 or −3/2 o.e.	2	1 each	
	(ii) <i>k</i> < −9/8 o.e. www	3	M2 for 3^2 (-)(-8 <i>k</i>) < 0 o.e. or -9/8 found or M1 for attempted use of $b^2 - 4ac$ (may be in quadratic formula); SC: allow M1 for 9 - 8 <i>k</i> < 0 and M1 ft for <i>k</i> > 9/8	5

2	y(x-2) = (x+3)	M1	for multiplying by $x - 2$; condone	
	$y_{1} = 2y_{1} = y_{1} = 2$ or ft [ft from option		missing brackets	
	errors if of comparable difficulty – no ft if there are no xy terms]	M1	for expanding bracket and being at stage ready to collect <i>x</i> terms	
	xy - x = 2y + 3 or ft	M1	for collecting <i>x</i> and 'other' terms on opposite sides of eqn	
	$[x=]\frac{2y+3}{y-1}$ o.e. or ft	M1	for factorising and division	
	alt method:		for either method: award 4 marks only if fully correct	
	$y = 1 + \frac{5}{2}$	M1		
	$\begin{array}{c} x-2 \\ y-1 = \frac{5}{2} \end{array}$	M1		
	x-2	M1		
	$x-2 = \frac{5}{y-1}$			
	$x = 2 + \frac{5}{y - 1}$	M1		4

3	(y-3)(y-4) = 0 y = 3 or 4 cao	M1 A1	for factors giving two terms correct or attempt at quadratic formula or completing square or B2 (both roots needed)	
	$x = \pm \sqrt{3}$ or ± 2 cao	B2	B1 for 2 roots correct or ft their y (condone $\sqrt{3}$ and $\sqrt{4}$ for B1)	4

4	(i) √3	2	M1 for $\sqrt{48} = 4\sqrt{3}$	
	(ii) common denominat $(5 - \sqrt{2})(5 + \sqrt{2})$ =23 numerator = 10	M1 A1 B1	allow M1A1 for $\frac{5-\sqrt{2}}{23} + \frac{5+\sqrt{2}}{23}$ allow 3 only for 10/23	5

5	$\frac{-5}{10}$ o.e.	3	M1 for $4x + 5 = 2x \times -3$ and M1 for $10x = -5$ o.e. or M1 for	
	10		$2 + \frac{5}{2x} = -3$ and M1 for $\frac{5}{2x} = -5$ o.e.	3

6 $[a=]\frac{2c}{2-f}$ or $\frac{-2c}{f-2}$ as final answer	3	M1 for attempt to collect <i>a</i> s and <i>c</i> s on different sides and M1 ft for <i>a</i> (2 – <i>f</i>) or dividing by 2 – <i>f</i> ; allow M2 for $\frac{7c-5c}{2-f}$ etc	3
---	---	---	---

7 $b^2 - 4ac$ soi use of $b^2 - 4ac < 0$ $k^2 < 16$ [may be implied by $k < 4$] -4 < k < 4 or $k > -4$ and $k < 4$ isw	M1 M1 A1 A1	may be implied by $k^2 < 16$ deduct one mark in qn for \leq instead of $<$; allow equalities earlier if final inequalities correct; condone <i>b</i> instead of <i>k</i> ; if M2 not earned, give SC2 for qn [or M1 SC1] for k [=] 4 and - 4 as answer]	4
--	----------------------	---	---

8	$a = \frac{1}{4}$	2	M1 for subst of -2 or for $-8 + 4a + 7 = 0$	
			o.e. obtained eg by division by $(x + 2)$	2

9	n (n + 1) seen = odd × even and/or even × odd = even	M1 A1	or B1 for $n \text{ odd} \Rightarrow n^2 \text{ odd}$, and comment eg odd + odd = even B1 for $n \text{ even} \Rightarrow n^2 \text{ even}$, and comment eg even + even = even allow A1 for 'any number multiplied by the consecutive	2
			number is even'	

B3 for $[C =] \frac{4}{\frac{1}{p} - 1}$ o. 4 unsimplified	10	$[C =] \frac{4P}{1-P}$ or $\frac{-4P}{P-1}$ o.e.	4	M1 for $PC + 4P = C$ M1 for $4P = C - PC$ or ft M1 for $4P = C (1 - P)$ or ft B3 for $[C =] \frac{4}{\frac{1}{P} - 1}$ o. unsimplified	4
---	----	--	---	--	---

11	(i) $k \le 25/4$ (ii) -2.5	3 2	M2 for $5^2 - 4k \ge 0$ or B2 for 25/4 obtained isw or M1 for $b^2 - 4ac$ soi or completing square accept -20/8 or better, isw; M1 for attempt to express quadratic as $(2x + a)^2$ or for attempt at	5
			as $(2x + a)^2$ or for attempt at quadratic formula	